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Abstract—5G wireless networks use the network slicing tech-
nique that provides a suitable network to a service requirement
raised by a network user. Further, the network performs effective
slice management to improve the throughput and massive con-
nectivity along with the required latency towards an appropriate
resource allocation to these slices for service requirements. This
paper presents an online Deep Q-learning based network slicing
technique that considers a sigmoid transformed Quality of-
Experience, price satisfaction, and spectral efficiency as the
reward function for bandwidth allocation and slice selection to
serve the network users. The Next Generation Mobile Network
(NGMN) vertical use cases have been considered for the simula-
tions which also deals with the problem of international roaming
and diverse intra-use case requirement variations by using only
three standard network service slices termed as enhanced Mobile
Broadband (eMBB), Ultra Reliable Low Latency Communication
(uRLLC), and massive Machine Type Communication (mMTC).
Our Deep Q-Learning model also converges significantly faster
than the conventional Deep Q-Learning based approaches used
in this field. The environment has been prepared based on ITU
specifications for eMBB, uRLLC, mMTC. Our proposed method
demonstrates a superior Quality-of-experience for the different
users and the higher network bandwidth efficiency compared to
the conventional slicing technique.

Index Terms—5G, wireless communication, Network slicing,
Deep Q-learning, Quality-of-Experience, NGMN vertical use-
cases.

I. INTRODUCTION

After 2020, it is anticipated that the ongoing decade would
experience a 1000 fold-increase in data traffic compared
to the 2010 levels [1]. Unlike the earlier generations of
communication networks, this huge amount of data traffic
also includes a large variety of user requirements which vary
from customer to customer. The 3G/4G network performance
used to be evaluated using the hard metrics such as peak
data-rates, coverage, and spectral efficiency wherein the 5G
network performance is proposed to be evaluated in terms of
user’s Quality-of-Experience (QoE). Switching to QoE would
assure positive experience of end users, which would mean the
overall success of a network from the user perspective [2]. 5G
networks will also offer a more user-centric and context-aware
experience, delivering personalized content and assistance

services [3]. therefore, a single network is not sufficient to
satisfy every customer’s specific requirements needing the
concept of network slicing [4].

According to the Next Generation Mobile Network (NGMN)
[5], a network slice is a set of virtual network functions and the
resources to run these functions, forming a logical network that
meets the requirements of a particular use case. As physical
network slices would lead to higher costs and higher energy
requirements hence creating virtualized network slices is more
viable and sustainable solution. The implementation and the
programmability of network functions is provided by network
function virtualization (NFV) and software defined networking
(SDN) [6]. Forums such as NGMN Alliance and ITU-R
consider the following three main 5G service types: Enhanced
Mobile Broadband (eMBB) which requires high bandwidth
and ensures high network capacity, Massive machine type
communication (mMTC) which provides a huge connection
density, and Ultra Reliable Low Latency Communication
(uRLLC) which provides very low latency and high reliability
to satisfy mission critical use cases. Use cases have been
grouped by many organisations with the aim of covering every
possible requirements a user can have. The METIS-II project
[7] defined 5 use cases which according to them covers most
vertical use cases, but due to a large variety of intra use case
requirement variations being provided, we use the 25 vertical
use cases of the NGMN for this paper.

A large number of research articles are focused on the
network slicing based on creating multiple slices without
taking into account the complexities and challenges of roaming
and interoperatibility. Therefore, the global system for mobile
communications association (GSMA) [8] states that a stan-
dardization practice for defining Network Slices is necessary
for Inter-operator roaming. In addition to the above, GSMA
also defines that mobile network operators can deploy multiple
network slices of different types that are together packaged
as a single product targeted towards business customers
(business bundle) having multiple and diverse requirements.
For instance a vehicle may simultaneously need an eMBB slice
for infotainment and an uRLLC slice for telemetry, assisted



driving etc. Thus the use cases also consider the multiple slice
allocation to the network users. Next, we discuss the various
works in the domain of 5G network resource allocation.

II. RELATED WORKS

The authors in [9] have worked on the problem of two level
resource allocation in network slicing mainly from a financial
point of view of resource bidding between the mobile virtual
network operator (MVNO) and the infrastructure provider (InP)
as higher level problem and assignment of resources to users
from multiple MVNOs as lower level problem. Next, adding
the machine learning framework to this, the authors of [10]
have used supervised machine learning algorithms for the
problem of slice selection as a classification task on a dataset
which achieved a good accuracy while training and testing.
The major issue with this work is that the deployment of
the supervised machine learning model in a network would
loose accuracy while encountering the real time network data.
Next, in [11], a deep learning based slice selection approach
is proposed based on key performance indicators (KPIs) for
the varying traffic load prediction. The main drawback of
this work is that predicting future traffic can be less accurate
keeping in mind the wide variety and randomness in data
traffic nowadays. Further deep reinforcement learning was also
explored to be used for network the resource allocation. The
work in [12] used the classical DQN for resource allocation
among the network slices and in [13], the authors proposed an
interesting modification to the classical DQN by using discrete
normalized advantage functions to convert the discrete action
space to a continuous which further enhanced the performance
of the agent. However, in all the above works consider slice
selection without taking into account whether a user with
diverse requirements is satisfied or not and therefore the reward
function has not been defined properly to guide the agent to
maximize the user satisfaction and secondly the convergence
time is significantly higher which would lead to a high delay
in serving customers in real time scenarios.

Moreover, all the above discussed works in resource allo-
cation among network slices have considered a user getting
a single slice, not taking into account the fact that 3GPP rel
16 stated that a user equipment (UE) can be simultaneously
connected with up to 8 network slices. Motivated by the above,
our contributions in this work can be summarized as

• An online deep reinforcement learning algorithm has been
proposed as a modified version of classical deep Q learning
for bandwidth allocation and slice selection.

• A novel robust reward metric is proposed for our deep Q
learning agent inspired from activation functions which
guides the agent to converge in about 100 times lesser
episodes than previous approaches [13].

• Our work analyses all the NGMN 25 vertical industry
use cases and demonstrates that with only three standard
slices all the diverse time-varying user requirements can
be served using multi-slice connectivity to UEs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Notations

The mathematical notations used in this paper are defined
in Table I.

Symbol Description
BT Total available bandwidth
A Action space
st State at time t
Bi Bandwidth allocated to ith slice
Li E2E latency of ith slice
Ri Reliability of ith slice
Ci Capacity of ith slice
ϑi Quality of Experience (QoE) of ith slice
Θi User Satisfaction ratio if ith slice is assigned
Θu User Satisfaction score of the user
πi Cost per unit of bandwidth of ith slice
r Reward
Se Spectral efficiency

TABLE I: Symbols and notations

B. System Model

We consider a RAN slicing scenario of multiple MVNOs,
each having multiple logical virtualized basestations (vBS)
with limited system bandwidth of BT each. There is a set of n
users which belong to 25 different use cases as defined in [14].
A use case refers to a group of users with similar requirements.
The user information of all the n users including the use case
ID of each is passed on to a MVNO assigns a vBS to the
user based on prioritised traffic scheme. For each vBS, a DQN
agent is activated and according to the KPI requirements of
the particular use case, the MVNO assigns the total bandwidth
for a user which along with the user information is further
passed on to a DQN agent. The agent further allocates the
total bandwidth BT into the single or multiple standard slices
based on the diverse user requirements where

BT = B1 + B2 + B3. (1)

Next the DQN assigns rewards to make the slices tailored
to the specific use case requirements and passes the optimal
bandwidth allocation information to the MVNO which finally
serves the customer as either a single slice or a business bundle
of two or three slices as described in [8]. Simultaneously other
n− 1 DQNs allocate optimal bandwidth for the remaining
n− 1 users. Once an already served user disconnects, the
bandwidth gets freed from it and next user from the user queue
is assigned to it’s agent. We define generic slice templates for
the three slices as per the idea from GSMA [8] for dealing
with the problem of roaming. 1st slice template is based on
uRLLC service type involving high reliability and very low
latency, 2nd slice template is based on eMBB service type
which involves higher bandwidth and extremely high data
rates, 3rd slice template is based on mMTC service type which
involves high connection density and scalability [7]. The QoE
for each user of the ith slice can be defined as a weighted sum
of all the KPIs given as

ϑi = α1f1

(
Ci

Ct

)
+ α2f2

(
Li
Lt

)
+ α3f1

(
Ri

Rt

)
. (2)



The scaling functions f1 (.) and f2 (.) in (2) are mathematically
defined as

f1(x) = 1− log (10)

log (10 + x)
, (3)

f2(x) =
log (10)

log (10 + x)
, (4)

where f1 (.) scales the values of the capacity and the reliability
satisfaction ratios in a monotonically increasing manner and
f2 (.) scales the value of the latency satisfaction in a mono-
tonically decreasing manner. The target values Ct, Lt of the
QoE (ϑ) in (2) for all the 25 NGMN use cases from [14] are
given in Table II. Further, α1 , α2 and α3 are weights assigned
to the KPIs signifying the importance of the satisfaction of
the particular KPI to the user. The target values for the KPIs
might be same within a use case but the weights can vary also
among users of the same use case. For instance, if user of
the use case group UC7 (High Speed train) is downloading
a file with large size, he needs high data-rate, so the weight
corresponding to the capacity term would be higher, whereas
another user in the train might be playing a multiplayer game
requiring low latency, then the weight corresponding to the
latency term would be much higher. Similarly within every
25 use cases there would be users with different importance
to each KPI. From a subscriber’s point of view, getting good
quality service at the lowest possible price is definitely the
measure of satisfaction. Hence, the price satisfaction pi of ith
slice where i = 1, i = 2 and i = 3 denote the uRLLC, eMBB
and mMTC slices respectively, can be defined as

pi = βf2

(
Biπi
BT

)
(5)

where β is the weight which refers to the importance of lower
price for the user. The ratio π1:π2:π3 is the price ratio where
π1 > π2 > π3 as uRLLC slice is given the highest priority,
followed by eMBB and mMTC. Finally, the user satisfaction
score Θi of the ith slice is defined as

Θi =
1

1 + exp (−ϑ+ log(piSe))
(6)

A subscriber can have two types of operator plans: single slice
or multi-slice. In single slice plan, the subscriber is allotted
the slice with the highest reward Θi. In multi-slice plan, a
subscriber is allotted multiple slices based on his/her service
level agreement (SLA) operator plan. Let the SLA operator plan
be defined as a binary mask vector [w1 w2 w3] where w1,
w2, w3 are value of wi is equal to 1 if ith slice is required by
the user, else is equal to 0. Let the individual user satisfaction
score are arranged in the vector defined as [Θ1 Θ2 Θ3].
From this, the user satisfaction score Θ for the multi-slice user
can be defined as

Θ =
[w1 w2 w3] • [Θ1 Θ2 Θ3]

T

w1 + w2 + w3
. (7)

The final user satisfaction score of any user can be sum-
marised as :

Θu =

{
max (Θi) if operator plan is single-slice
Θ from((7)) if operator plan is multi-slice

(8)

C. Problem Formulation

The objective of the problem formulation is to make sure
every diverse KPI requirement of each user is satisfied and
the QoS parameters defined in Table II is maximised for every
use case. For this objective we divide the problem into two
sub-problems:

1) Network slicing problem: The task of slicing BT

and further slice selection based on user satisfaction
is formulated as a Markov Decision process (MDP). A
Markov Reward Process is a tuple < S,A, P,R, γ >.
The goal of the MDP is to maximize the Quality of
Experience (ϑ) of each user and also keeping into
consideration the price satisfaction and fair bandwidth
utilization.

2) Heterogeneous traffic assignment problem: We de-
sign a methodology to deal with the complex task of
assigning users to a MVNO’s vBS based on traffic and
priority to different use cases.

IV. PROPOSED MODELS:

A. DQN based Network slicing

For solving the MDP problem to maximize rewards, Q
learning can be used which works as an off-policy, model-free
, online reinforcement learning algorithm. But due to the large
action space of our problem leading to a huge Q-Table, Q-
learning would take a long time to converge which would lead
to delay faced by customers. To overcome this challenge we
use Deep Q learning in which the Q function is approximated
using a Deep neural network. As [15], we use a DQN agent
with experience replay which consists of two Neural networks,
a target neural network which calculates the target Q value
and another is actor neural network which is used for updating
the network parameters and generating the sampled values
from experience replay pool and further choosing actions. The
proposed DQN has the following parameters:

Action space: The actions are three discrete bandwidths
allocated to the three slices which sum up to the total bandwidth
as given in (1)

A =


b11 b12 b13

b21 b22 b23

...
...

...
bn1 bn2 bn3


State Space: The state space contains environment

states/observations which consists of Signal to noise ratio
(SINR), arrival rate, packet size, latency and error rate values.

Reward: The reward r is defined according to (8)

r = Θu (9)



Fig. 1: Deep Q Learning illustration
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UC1: Pervasive Video X X 300 10 0.999
UC2: Smart Office X X 1000 10 0.99999
UC3: Operator Cloud X X 300 10 0.99999
UC4: Open-Air Gathering X X X 25 10 0.99999
UC5: 50+ Mbps everywhere X X 50 10 0.999
UC6: Ultra-low Cost X 10 50 0.999
UC7: High Speed Train X X X 50 10 0.999
UC8: Remote Computing X 50 10 0.99999
UC9: Moving Hot Spots X 50 10 0.999
UC10: Aircraft X X 15 10 0.999
UC11: Smart Wearables X 0.1 100 0.999
UC12: Sensor Networks X 0.1 100 0.999
UC13: Video Surveillance X X 50 50 0.99999
UC14: Tactile Internet X 50 1 0.99999
UC15: Natural Disaster X 0.1 1000 0.999
UC16: Automated Driving X X 10 1 0.99999
UC17: Collaborative Robots X X 10 1 0.99999
UC18: eHealth X 10 10 0.99999
UC19: Remote Surgery X 10 1 0.99999
UC20: Drones X X 10 10 0.999
UC21: Public Safety X 10 10 0.99999
UC22: News Information X 200 100 0.999
UC23: Local Broadcast X 200 100 0.999
UC24: Regional Broadcast X 200 100 0.999
UC25: National Broadcast X 200 100 0.999

TABLE II: NGMN vertical use case requirements

Q-Values: We use the Bellman equation to update the Q
values

Q(s, a) = R + γmax
at+1

Q(st+1,at+1)

Experience Replay: The agent stores the past experi-
ences/states as Transition tuples [’state’, ’action’, ’reward’,
’next state’] and uniformly selects some mini-batch of items

from the stored values to update the Q-value. It improves the
sample efficiency of the algorithm by enabling data re-usability
and also improves the stability during training.

Model free: Model-free learning is when an agent can
directly derive an optimal policy on it’s own from it’s
interactions with the environment without the need to create a
model beforehand.

Loss function: We use the loss function defined in [16]

Li(θi) = E
[
Lδ

(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)]
(10)

Here, Lδ is the Huber loss function, defined as:

Lδ(a) =

{
1
2a

2 for |a| ≤ δ
δ
(
|a| − 1

2δ
)

otherwise
(11)

Feed-forward Neural network architecture: The Neural
Network architecture used in our DQN consists of two fully
connected linear units with ReLU activation function. We keep
the number of neurons less so as to deal with the problem of
overestimation of Q values in DQN. Both [15] and [16] have
considered finite number of episodes in their MDP problem,
but we consider a different approach. In our network slicing
scenario, we have to make sure that the Loss is minimized
and function converges in every DQN for a user, but in an
episodic algorithm we would not know that for which use case
how many episodes it will take to converge. So, instead of
running the algorithm over a defined set of episodes, we run
it as a semi-continuous task which terminates only when the
Loss is lesser than a threshold value, as experimentally we
observed that after the loss gets near to 0.05 the agent stops it’s
exploration phase and allots the same action everytime, hence
we took this threshold to be below 0.05 so that there is no
extra computational resource utilization by running the DQN
agent for yielding the same action. This methodology assures
every user gets the most optimal slicing configuration and to
make sure to deal with time varying user demand variations,

B. Priority based Traffic assignment

For the sub-problem of user scheduling and vBS assignment,
we consider multiple MVNOs with subscribed users, each
MVNO having a limited system bandwidth and can create
multiple logical vBS as per growing user demand. A user is
assigned a priority based on his/her requirements. A traffic
demand analyzer keeps track of number of connection requests
at the moment and creates multiple vBS each with a assigned
DQN agent. Based on UE information, the DQN selects the
slice / slices for the user and allocates bandwidth to each slice
to maximize the user satisfaction score (Θ). A resource monitor
keeps track of remaining spectrum at each vBS and assigns a
user belonging to a low demand use-case to the vBS’s DQN
agent which further allocates the required bandwidth. A Utility
monitor keeps in notice about the slope of User satisfaction
score (∂Θi

∂t ). If the slope decreases for at least a threshold
amount of time, this would mean that the user’s bandwidth
requirements have increased, as a DQN agent once converged
does not let Θ decrease.



Algorithm 1 Modified DQN with Experience Replay
Result: Optimal slice configuration policy π
Initialize replay memory D to capacity N
Initialize Q neural network
Initialize Target Q neural network
while loss > 0.05 do

for t = 1,T do
Set/Update ε value with ε-decay
Choose an action a from state s using ε-greedy pol-
icy(Q)

Store transition (st, at, rt+1, st+1) in replay memory
D

if enough experiences in D then
Sample random mini-batch of transitions
(φj , aj , rj , φj+1) from D

Set yj =


rj , for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′, θ)

for non-terminal φj+1

Compute Target Q values w.r.t old paramters
Calculate Huber Loss between Q-network and Q-

learning targets
Update Q using RMSprop optimizer to minimize

loss function
Every C steps copy weights from Q to Q̂

end
end

end

Algorithm 2 Heterogenous Traffic scheduling in a MVNO
Result: Efficient assignment of Spectrum to each user of a

MVNO
Initialize and fill the user waiting Queue
Sort the waiting queue based on Priority and create multiple

logical vBS as per number of users Activate agents required
to serve the users based on traffic.

while user queue not empty do
for each user do

Assign a DQN agent
Agent calculates and allocates the number of RBs of

the Slice with maximum Θi to be allocated to a user
if ∂Θi

∂t < 0 then
Send the user to another vBS and activate
a new agent Reconfigure the number of RBs to
again maximise the declining Θi

end

end
end

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Computational requirements

We used Python 3.7 for creating the environment for the
Agent based on ITU-R specifications. The DQN agent was
created using PyTorch and we ran the simulations in PyCharm

IDE. For the simulation of multiple vBSs, we have used
Python’s capability of multiprocessing and considered each vBS
as a worker process. Furthermore, the hardware specifications
of the system used for running our simulations are listed in
Table III.

TABLE III: Hardware specifications

Component Specification
Processor Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

GPU NVIDIA GeForce GTX 1650 with Max-Q Design
GPU memory 8113 MB
CUDA cores 896

B. Results

For the simulation, as discussed in section III-B, the RAN
slicing scenario consists of multiple MVNOs sharing resources
along with each MVNO having many vBSs but for highlighting
the achievements of our model we consider a MVNO with
each vBS having a system bandwidth of 30 Mhz. This 30 MHz
of bandwidth would be distributed among users by our DQN
agent. We take initial ε value to be 0.9 so as to make the agent
cover all possible observations to ensure global optimum of the
Loss function is reached. The price ratio of the slices π1:π2:π3

is taken as 3 : 2 : 1. Keeping in mind the higher expectations
of the NGMN use cases in [14] as compared to 3GPP, we
consider allotting the total 30 MHz bandwidth to a single user
if their operator plan is multi-slice or even as low as 1 MHz if
the user is a single-slice user with low QoE expectations. We
simulated for 100 users with each belonging to one of the 25
NGMN use cases.

Fig. 2: Average User satisfaction score (Θ) achieved for the
25 NGMN use cases

Fig. 2 shows the average User Satisfaction score (Θ) achieved
for users in a use case group. The best possible Θ achieved in
our simulation is 0.94 and the least is 0.81.



Fig. 3: Episodic Loss plot for the DQN agent

Due to the robust reward metric, for every use case our
model converged in atleast 117 episodes in the worst case and
35 episodes in the best case, with each episode having 1000
training steps. This is about 100 or more times lesser than that
of the the work in [13] and much more lesser than previously
used DQN agents in this field.
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Fig. 4: Average bandwidth saved per use case

In Fig. 4, the average bandwidth saved per user in the use
case by implementing our DQN agent is illustrated. It can be
seen that even when only about 5 MHz or less bandwidth is
used, our model provides a User satisfaction score more than
0.81 in an average for every use case, which is due to the
fact that only use cases with higher throughput requirements
require higher bandwidth and satisfying the use cases with
other requirements can be done in minimal use of bandwidth.
With much lesser use of bandwidth also our model is able
to gain a high User Satisfaction score, in turn increasing the
QoE, price satisfaction and also the spectral efficiency in every
vertical NGMN use case.

VI. CONCLUSION

In this paper, we have presented a deep Q-learning based
network slicing technique for an optimal resource allocation
and slice selection in 5G wireless networks. The novel
quality-of-experience based reward has been proposed for an
efficient throughput, connectivity and latency requirement of
the different services for a wide variety of NGMN use cases
being allotted three standard network service slices termed as
eMBB, uRLLC, and mMTC. The modified algorithm has also
significantly reduced the convergence time for the DQN agent.
The simulation results demonstrate the superior performance
of the proposed slicing technique over the previously used
methodologies in terms of user satisfaction score and the
bandwidth efficiency of the network.
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