

FedAffect: Few-shot federated learning for facial expression recognition

Debaditya Shome and T. Kar KIIT University, Odisha, India

ICCV workshop: Human-centric Trustworthy Computer Vision From Research to Applications
17th October 2021

Motivation

- Annotation of large-scale datasets in the real world is not feasible.
- Training models on large curated datasets often leads to dataset bias which reduces generalizability for real world use.
- Models fail to perform well on unseen faces.
- Fully-supervised approaches won't scale.
- Real world user devices hold a rich collection of unlabeled facial data.
- Privacy concerns of facial data.

FedAffect framework


```
Algorithm 1 FedAffect framework
 Input: number of devices N,
      number of communication rounds T,
      number of representation learner epochs E1,
      number of classes C,
      learning rate \eta
 Output: Globally trained model weights w_f^t and w_g^t
      Server executes:
  1: Initialize w_f^0, w_g^0
  2: Fetch data availability information
  3: for t = 0, 1, ..., T - 1 do
         for i = 1, 2, ..., N in parallel do
            if Number of labeled data samples at i > C then
               Send w_f^0, w_g^0 to i
               (w_f^t)_i, (w_g^t)_i \leftarrow \text{LocalFewShot}(i, w_f^t, w_g^t)
            if i has unlabeled data then
              (w_f^t)_i \leftarrow LocalReprLearn(i, w_f^t)
 11:
            end if
         end for
13: w_f^{t+1} \leftarrow \sum_{k=1}^{N} \frac{D_i}{D}(w_f^t)_K

14: w_g^{t+1} \leftarrow \sum_{k=1}^{N} \frac{D_i}{D}(w_g^t)_K

15: end for
  16: return w_f^t, w_g^t
      LocalReprLearn(i, w_f^t):
  17: Initialize projection network p
     Initialize encoder network f based on w_f^t
  19: Set batch size B
 20: for sampled minibatch x_k from k = 1 to B do
         for all k \in (1, ..., B) do
           select two augmentation functions tT, tT'
           get first projection z_{2k-1} = p(f(t(x_k)))
           get second projection z_{2k} = p(f(t'(x_k)))
         l(i, j) = -\log \frac{\exp(\frac{sim(x_i, x_j)}{\tau}))}{\sum_{k=1}^{2M} I_{[k \neq i]} \exp(\frac{sim(x_i, x_j)}{\tau})}
         L = \frac{1}{2B} \sum_{1}^{B} [l(2k-1,2k) + l(2k,2k-1)]
         Update networks f and g to minimize L
  29: end for
 30: return updated weights of encoder, w_f^t
      LocalFewShot(i, w_f^t, w_g^t):
 31: Initialize embedding module f based on w_f^t
 32: Initialize relation module f based on w_a^t
 33: Sample support set S and query Q
 34: Train f and g jointly to minimize L_{relation} from equa-
      tion 2
 35: return (w_f^t)_i, (w_g^t)_i
```

24:

Local self-supervised representation learning

LocalReprLearn (i, w_f^t) : Initialize projection network p Initialize encoder network f based on w_f^t Set batch size B for sampled minibatch x_k from k = 1 to B do for all $k \in (1, ..., B)$ do select two augmentation functions t T, t T'get first projection $z_{2k-1} = p(f(t(x_k)))$ get second projection $z_{2k} = p(f(t'(x_k)))$ end for $l(i,j) = -\log \frac{\exp(\frac{sim(x_i,x_j)}{\tau}))}{\sum_{k=1}^{2M} I_{[k\neq i]} \exp(\frac{sim(x_i,x_j)}{\tau})}$ $L = \frac{1}{2R} \sum_{1}^{B} [l(2k-1,2k) + l(2k,2k-1)]$ Update networks f and g to minimize Lend for **return** updated weights of encoder, w_f^t

Few-shot classifier

LocalFewShot (i, w_f^t, w_g^t) :
Initialize embedding module f based on w_f^t Initialize relation module g based on w_g^t Sample support set S and query Q
Train f and g jointly to minimize $L_{relation}$

Global federated learning

```
Server executes:
Initialize w_f^0, w_a^0
Fetch data availability information
for t = 0, 1, ..., T - 1 do
   for i = 1, 2, ..., N in parallel do
      if Number of labeled data samples at i > C then
         Send w_f^0, w_q^0 to i
         (w_f^t)_i, (w_g^t)_i \leftarrow \text{LocalFewShot}(i, w_f^t, w_g^t)
      end if
      if i has unlabeled data then
         (w_f^t)_i \leftarrow \mathbf{LocalReprLearn}(i, w_f^t)
      end if
   end for
  w_f^{t+1} \longleftarrow \sum_{k=1}^N \frac{D_i}{D} (w_f^t)_K
  w_q^{t+1} \longleftarrow \sum_{k=1}^N \frac{D_i}{D} (w_q^t)_K
end for
return w_f^t, w_q^t
```

Evaluation and Results

Method	Overall accuracy
Multi-feature ensemble [37]	97%
DeepExpr [4]	89.02%
Centralized (ours)	89.7%
FedAffect (proposed)	97.3%

Table 1: Performance comparison on FERG dataset

Method	Overall accuracy
CNN [35]	65.97%
Ensemble ResMaskingNet [14]	76.8%
RAN-VGG16 [31]	89.16%
Centralized (ours)	87.51%
FedAffect (proposed)	84.9%

Table 2: Performance comparison on FER-2013 dataset

(a) Centralized learning

(b) Federated learning

Conclusion and Future scope

- We tackle the problem of training facial expression recognition directly from decentralized privacy-sensitive data available on user devices.
- We propose FedAffect, a novel federated learning framework which collaboratively trains two disjoint neural networks for robust facial expression recognition.

• In the future, we aim to extend FedAffect to a Non-IID FL setup, with smart face cropping for dealing with in-the-wild facial expression data.